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TRUMPET INTONATION ACOUSTICS

We T. Cardwell, Jr.

In the following discussion, we will be concerned with
what we mean when we say a trumpet has "good intonation", and
how intonation can best be determined, both by blowing tests
and by electronic and acoustic measurements. We shall assume
‘acquaintance with the fact that standard vibrational frequencies
have long ago been agreed upon by (nearly all) musicians, and
that the standard frequencies for all the other tones of the
scale are referred to a standard "A" of exactly 440 Hertz
(cycles per second).

Trumpeters who have learned to play exacting music on the
modern valved trumpet are acquainted with the edjustments they
must make in the length of the third valve crook when they play
the written notes just below the staff. Trumpets of good quality
often have an ad justing trigger on both the first and third valve
crooks. So 1t is well known that some of the notes just at the
bottom of the staff, and just below the staff, that are played
with the same fingerings as notes up in the staffyare not in
relative tune with those upper notes, unless "trigger" adjust-

ments are made. Scrupulous trumpeters know also that even some
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of the unvalved, open tones are not in tune with each other.

In fact, it is not uncommon with even the best of trumpets, for
written e" to be noticeably flat with respect to written c",

the tuning note. For this reason, exacting players sometimes

play written e" as a valved tone (1l-2) rather than as an open tone.

Fortunetely for their listeners, most well practiced
trumpeters can and do make lip corrections so skillfully that
the imperfections of their instruments are not detectable by the
listeners. In fact, a highly-skilled trumpeter may make his 1lip
corrections so automatically, and so subconsciously, that unless
he breaks habit, and concentrates consciously on sensing the
tuning imperfections of the trumpet he 1s playing, he may himself
be unaware of those imperfections. We may say, however, that a
discriminating trumpeter, by definition, will become acguainted
with the intonation imperfections of his trumpet, and will
consciously work out the optimum types of correction, which then
by practice will become automatic and subconscious with him.

DaleClhas given a good discussion of intonation imperfections,
and of how the trumpeter should learn the intonation peculiarities
of each of his instruments in order best to compensate for those
peculiarities.

Dale has also shown graphically some typical intonation
patterns, e.g. with the note e" flat, and note g" less flat, or
even a little sharp. He did not say how his patterns were de-
termined, but presumably they were determined by careful blowing
tests.

The author uses electronic and acoustic apparatus that

quantitatively measures the intonation errors of the trumpet alone,



without the trumpeter blowing it. The apparatus will be
described below, but first, a word may be in order for the
trumpeter whose devotion to his own art has not afforded him a
diversion into experimental and theoretical acoustics. To him

it may seem unaesthetic, or worse, - unbelievable - that an
assembly of electronic and acoustical apparatus could make a re-
liable test of the noble trumpet. Let him be confirmed in the
belief that some of the properties of the trumpet are recognized
to be beyond present quantitative description and translation
into physical tests. However, the property of intonation is not
one of these. Modern acoustic instruments permits intonation
measurements with an accuracy and reproducibility that the human
himself cannot approach. (For example, it is easy to show with
the measuring apparatus that the human himself cannot blow exactly
the same note in a set of successive tests.) The most important
point however, is that human blowing tests and acoustic measure-
ments do not disagree with each other. Many skilled trumpeters
have visited the author's laboratory, and none of them has ever
found the machine tests of his trumpet inconsistent with his own
previous blowing tests. On the other hand, most of those trumpet-
ers have expressed pleasure at having their own beliefs - and
sometimes mere susplclons - confirmed, and put into confident and
provable numbers.

It may be well to digress a bit here to specify exactly what
we mean when we say none of those trumpeters has ever found the
machine tests inconsistent with his own blowing tests, because in
a later discussion, Professor Benade will say that "For many years

acousticians were puzzled and frustrated because their measurements
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of the natural frequencies in wind instrument air columns did
not correlate very well with the pitches played by musiclans

on these instruments". Professor Benade will then go on to
explain how some of the higher natural frequencies of the wind
instruments modify the pitches that would tend to be produced

by lower natural frequencies when the instruments are blown.

But the effects Professor Benade will be discussing are more
subtle, both qualitatively and quantitatively, than those we

are discussing here. Furthermore, as he will explain, they tend
to operate principally (1) when the trumpet is in the low playing
range (gbto c¢") and (2) when the trumpet is being played loudly.
The effects we will be discussing here are not so subtle. When

we measure the natural frequencies of the existing commercial

trumpets, we do not need to wonder why musicians do not blow

those same frequencies when they play; if they did they would not

be good musicians.

What we mean here when we say the machine tests are consistent

with blowing tests is that, for example, if the machine shows

that when the tuning note, c¢c", is set correctly, the next open
note, e", is a third of a semitone flat, the trumpeter will
always confirm that he has been "lipping-up" the e". Or, for
another example, if we help a trumpeter determine the correct
third-valve trigger-pull to put his db' in tune, he will always
confirm that the trigger-pull we have indicated is either the

same as what he has been using, or else it seems more comfortable,
that 1s, i1t takes less corrective lipping than the pull he has

been using.



Figure 1 represents the author's apparatus schematically,
and Figures 2 and 3 are photographs of the actual equipment in
the author's laboratory. The apparatus 1s of a generic type
first described by WebsterCIUOf C.G. Conn Ltd. Variants of it
have continued to be developed and used at Conn, by E.L. Kent
and his co-workers, and by Professor A.H. Benade at Case Western
Reserve University. The particular apparatus used by the present
author is patterned most closely after one used at the University
of Southern California by Professor John Backus. Still other
types of intonation-measuring apparatus, or more precisely,appa-
ratus. to measure acoustic impedances as a function of frequency,
are mentioned and diagrammed in a recent Scientific American
article by Professor BenadeCl5.

Referring again to Figure 1l: A trumpet (or sometimes only
part of a trumpet, e.g. only a mouthpiece) has a constant,
oscillatory current of air injected into it by a loudspeaker
driver feeding through a high acoustic resistance (over twenty
times the highest acoustic reslistance ever exhibited by the con-
ventional trumpet). The oscillatory air current is kept constant
by a feedback loop, comprising a monitor microphone and a level
holder, which controls the input to the power amplifier that
actuates the speaker driver. The pressures produced in the
mouthplece are sensed by a microphone inserted into the mouthplece.
In the present author's apparatus the insertion distance is
controllable by a micrometer adjustment so that different 1lip
insertions used by different players can be simulated.

The essential results given by the tests are the values of

the pressure sensed by the mouthpiece microphone, at the various
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frequencies.

Figure 4 shows typlcal resonance curves made with the
described apparatus. The horizontal coordinates are frequencies
in Hertz (cycles per second). They run from zero to 1700 Hz.
(The highest trumpet note in Bach's Brandenburg Concerto No. 2
is a concert G at 1568 Hz). The vertical coordinates here are
millivolts, as read from the vacuum tube voltmeter of Figure 1.
The bottom curve represents a conventional B-flat trumpets; the
middle curve, a high F trumpet; and the top curve a high B-flat
(piccolo) trumpet.

The frequencies of the peaks in Figure 4 are the resonance
frequenclies, the so-called natural frequencies, at which the

trumpet itself tends to cause the trumpeter to play. So the

. frequency positions of those peaks are the primary data of interest

in this discussion. However, there are other types of information
deducible from curves such as those of Figure 4. For instance,
the sharpnesses of the peaks, and thelr distinctions from the
surrounding valleys, are measures of the pitch selectivity of the
tested trumpet. Or putting it the other way around, the breadths
of the peaks determine how easily the trumpeter can “bend" the
notes whose pitch he desires to shade, either because they are in
error in the first place, or because the music being played requires
pltch shading.

Comparison of the top curve with the bottom curve shows one
reason why a piccolo trumpet is preferred for very high-pitched
trumpet music. It 1s easier to land on any one intended resonance

because the nearest neighbors are farther away. (The advantage 1s
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not, as those who have not played the piccolo trumpet might suppose,
that it makes it easier "to get up there"). The main reason for
the presentation of Figure 4 here is to indicate to the playing
trumpeter that the pitches he selects with his highly developed

lip control and breath control are definitely related to measurable
physical properties of the instrument itself. However, the
immedliate concern here is only where the resonance peaks are on

the frequency scale. How accurate are the pitches they represent?

If one plots only the frequencies of the peak amplitudes
from curves like those in Figure 4 on a musical graph, one gets
results like those of Figure 5, in which leftward displacements
from the center vertical line represent flatness, and rightward
displacements represent sharpness, both measured in musical cents,
or hundredths of a semitone. Figure 5 shows intonation graphs
for four modern B-flat and C trumpets. Each of the examples is
from a highly respected European or American manufacturer, and each
i1s a playing trumpet of a trumpeter who is very particular about
what he plays. Obviously, however, the intonation of each of these
trumpets 1s imperfect, and that fact was already suspected by the
owners of the instruments before the tests.

The intonation patterns of Figure 5 all show flatting as the
pitch rises, and that is not necessarily bad. Elaborate measurements
in which the condenser microphone is moved gradually into the
mouthplece as the frequency is raised, show that the player can
compensate for this flatting by gradually pushing more 1lip flesh

into the mouthpiece as he goes toward the higher register. This

action 1s quite natural, S e, On
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the other hand, 1t is intuitively obvious that zigzags in the
intonation curve are objectionable, because they cannot be cor-
rected by any type of smooth, monotonic action on the part of
the player. The most qgmmonly occuring fault is the leftward

e
zig at the fifth mode, éﬁu@@ﬁ:&ﬁ% followed by a rightward
"

zag at the sixth mode)§§=%g=¥==bnn==$ns=s$5FF). The fifth mode

of the trumpet 1s one that professional players often compensate
by alternate fingering when the tone is to be sustained and
prominent.

To see how well players compensate for the tendencies of
thelr instruments, we may look at Figure 6, containing an into-
nation graph for a B-flat trumpet owned by Edward Haug of the

San Francilsco Symphony. The points connected by the dashed lines

show how the trumpet itself tends to play. When the fourth mode

tuning note, c", is set at 466 Hz, the lower modes are a little
sharp, but not seriously so. The fifth mode, e", is more than a
third of a semi-tone flat, the sixth mode, g",is back in perfect
tune with the c", and the eighth mode, ¢c™ (high C) is about a
quarter tone flat.

The points connected by the solid line showed what happened
when Edward Haug blew the same trumpet,first putting the tuning
note, c", exactly in place, and then blowing the lower and upper
modes with only his ear to guide him. The lower modes were played
at very close to the frequencies indicated by the measured reso-

nances of the trumpet, but the fifth and eighth modes, written e",

and written c", were remarkably compensated, in fact overcompensated.

If the frequency errors of Edward Haug's blown notes, as



represented in Figure 6, are averaged, and then for each mode, one

considers the "relative error" to be the deviation from the average

are

error, it turns out that the relative errors ,so small as to be

hardly detectable to musical ears. (The minimum detectable error

5 cents, cmamll') So

Edward Haug had no difficulty in blowing correct notes from the

is about

trumpet in question, but he had to perform a zig-zag type of
compensation,:iarge compensation at written e", no compensation
at written g", andtiarge compensation again at written c''.
There 1s no question about his ability to do this, but there is
a question as to whether he should have to expend the effort,
consclously, or unconsciously.

What causes the intonation zigzags? Can a trumpet be built
that has no intonation zigzags (or only negligibly small ones?)

A complete answer to the first of these questions cannot be given
without the use of advanced mathematics, but a set of approximate
answers can be glven that may satisfy anyone who is not actually
undertaking intonation correction of existing trumpets or the
designing of new ones. The answer to the second question - can

a trumpet be built that has only negligible intonation zigzags -
is, happlly, yes. O
R B e T,

One of the answers to the question of what causes the in-
tonation zigzags pertains only to the fifth mode (written e").
Fourteen cents of the flatness of that mode is due to the fact
that the trumpet at least tends to play natural harmonics whose
frequencies are simple integer multiples of a fundamental frequen-

cy. On a "natural" (diatonic) scale, written e" would have
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exactly five-fourths the frequency of written c", the tuning
note, but in the scale of equal temperament, used in modern
music, written e", by definition, has a frequency 14 musical
cents sharper than this " just major third". So even a perfect
"natural trumpet" would play the modern written e" 14 cents
flat. From a trumpet-lover's point of view, we might therefore
always forgive at least 14 cents of fifth mode flatness, and
indeed go on to complain about the compromises that had to be
made to define and use the even-tempered scale. However, modern
trumpets err worse than by being only "natural". The fifth mode
is almost always found to be significantly more than 14 cents
flat.

The subnatural fifth mode, and all the other zigzags, arise

from undesirable variations in the shape of the trumpet air column.

At this point, it might seem most logical to examine in de-
tail just what are the shapes of trumpet air columns, and then
mention whatever undesirable variations in those shapes may occur.
However, the over-all gquestion of what makes intonation zigzags
would then split up into various subsidiary questions for the
different parts of the trumpet having different functions, and
the complications would tend to obscure the main principles.

For present purposes the over-all question of what makes intonation
zigzags can be treated much more simply by imagining temporarily
that the trumpet i1s a very simple kind of acoustic resonator, a
pipe of uniform cross-section, closed at one end, and open at the
other. Although the trumpet is far from such a simple resonator,

the trumpet may be sald to simulate such a resonator in some
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respects. At the bell end of the sounding trumpet there is
always a velocity antinode (or pressure node) just as there is
at the end of an open pipe, and inside the sounding trumpet there
are alternate nodes and antinodes. Although the nodes and anti-
nodes are not evenly spaced along the axis in the trumpet air
column, particularly when the low modes are being sounded, they
tend to become evenly spaced for the higher modes, just as are
the nodes and antinodes in a uniform pipe. Some complicated
differences between the alr vibrations in a simple closed-open
plpe and those in a trumpet air column occur at the mouthpiece
end. There, if the end condition is thought about as if it were
a velocity node, it must be thought about as if that node were
traveling away from the middle of the trumpet as the frequency
rises. However, if we recognize that we are making some simpli-
fications Jjust for thinking purposes, and if we check experi-
mentally any important deductions we make from our simple model,
there 1s no harm, and indeed there 1s considerable benefit in
using the closed-open pipe model.

Now, 1t has been known for decades that if one makes a bulge
(bore enlargement) in a tubular resonator, one will raise the
frequency of all the vibrational modes that have a velocity anti-
node (pressure node) at the position of that bulge. But the same
bulge will lower the frequency of all the vibrational modes that
have a velocity node (pressure antinode) at the position of that
bulge. A constriction (bore contraction) has just the opposite
effects. It lowers the frequency of all the vibrational modes
that have a velocity antinode at the position of the constriction,

and it raises the frequency of all vibrational modes that have a
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velocity node at the position of the constriction. For present
purposes, these polnts are best accepted as experimental facts
thaezg;n verify by bulging, or constricting, a tubular resonator.
Highly sophisticated derivations of quantitative formulas con-
cerning these effects are given in the articles of Schroeder

and Mermelsteinc9’C1o. Qualitative statements of the facts are
familiar in some of the musical literature, e.g. in Bate's
bookCII. In fact, Bate almost goes on to give the precaution

we will give below when he says: "We must consider also that

an irregularity in the bore which is near an antinode when the
fundamental is sounding may be approached by a node when the air
column breaks up to give a harmonic. In this way it is possible
for some harmonics in a given series to be out of tune with their
prime tone as well as mathematically incommensurate with each
other----",

Let us now refer to Figure 7 in which are represented the
standing ‘waves that could occur in a simple tubular resonator
closed at the left end and open at the right end. Six different
modes are represented, the first and second, the fourth,fifth,
and sixth, and the eighth. The velocity antinodes (regions of
maximum motion) are represented by the spread-apart maxima and
minima of the sinusoidal curves, and the velocity nodes (regions
of zero motion but maximum pressure variation) are represented
by the crossings of the sinusoids. For each mode, a velocity
antinode exists at the right.end of the resonator and a velocity
node at the left end. The total number of nodes is always equal

to the mode number.

Now, looking at Figure 7, let us consider what would be
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the effect of a constriction placed at the right end of the tube.
Every one of the modes has a velocity antinode at the right end,
so according to the rules already mentioned, every one of the
modes would be lowered (or flatted).

Next, let us consider what would be the effect of a con-
striction placed at the left end of the tube. Every one of the
modes has a velocity node at the left end, so according to the
rules already mentioned, everyone of the modes would be raised
(or sharped).

Next, let us consider what would be the effect of a con-
striction placed just slightly away from the left of the tube;
let us say, one-fifteenth of the total length away from the left

end. Now we notice that for the lower modes (one and two) the

constriction is still nearer to a node than to an antinode, so

those modes will be sharp, but by the time the fifth mode 1s
reached, the constriction is slightly nearer to an antinode, so
now it is beginning to cause the modes to be lowered in frequency
rather than raised, and when the eighth mode is reached, the
constriction is exactly at an antinode and produces its maximum
amount of frequency lowering. Note here that in the progression
from the first to the eighth modes the constriction at one-
fifteenth of the total length from the left end has only a mono-
tonic effect. It sharps the first mode the most, sharps the
second, third and fourth modes successively less, then begins

to flat the modes, and flats them successively more and more

(at least up to the eighth). However, if we now place the con-

striction any farther in from the left end, we will begin to get
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not a monotonic, but rather an oscillating, or zigzag effect.

For instance, let us place it at one-ninth of the total
length from the left end. If we examine this position with re-
spect to the nodes and antinodes of the various modes, we will
deduce that there wilill be sharping of the first and second modes,
but by the time the'ggéggh mode 1s reached there will be flatting.
There will be maximum flatting at the fifth mode, after which
the flatting will diminish. By the time the eighth mode is
reached there will be a slight sharping again. So now we have
produced a slow flatting zig (or less and less sharping zig)
from the first to the fifth modes, and then a slow sharping zag
(or less and less flatting zag) from the fifth through the eighth
modes.

All of the deductions we have been making in the last few
‘paragraphs can be summarized in diagrams like those of Figure 8,
in which mode shifts (flatting or sharping) are plotted against
mode numbers. In Figure 8, each of the diagrams 1s for a different
fractional distance of the constriction from the left (closed)
end of the tube. (The particular fractional distances chosen
for the second to fifth diagrams of Figure 8 1/9, 2/9, etc.,
were chosen because those fractional distances mark either nodes
or antinodes of the fifth mode((written e")) and later in this
discussion, particular attention 1s going to be drawn to those
positions in connection with actual tuning of the fifth mode.)

The observations we make from Figure 8 are that a constriction
in the closed-open tube very near the closed end causes a slow

flatting as we go from the first to the eighth modes (one zig),
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but as the fractional distance of the constriction from the closed -
end 1s increased, the mode shifts become wavelike, first flatting,
and then sharping (zigzags). The waves grow shorter as the
fractional distance grows longer. (As a matter of mathematical
fact, the lengths of these waves, measured in mode numbers, would
be exactly equal to the reciprocal of the fractional distance of
the constriction from the left end, and the first maximum of the
wave would always be at the fictitious mode number, 1/2. We can
see, for example that the wave for the fraction 3/9=1/3 has a
wavelength of three mode numbers, so it has maxima at 1/2, 3-1/2,
6-1/2, etc.)

In Figure 8 we have not shown a diagram for a constriction
at the fractional distance one-half, because we wanted to hold
down the number of diagrams, and that particular diagram is so
‘easy to describe in words. In that diagram the wave on which the
modes seem to ride would be exactly two mode numbers from crest-
to-crest, or one mode number from crest-to-trough, and the first
half-wave would go from a high at 1/2 to a low at 1-1/2, leaving
the mode number 1, exactly in the middle, neither sharped nor
flatted. Similar statements, mutatis mutandis, would apply to
each of the other modes. The wave would leave each of them exactly
between a crest and a trough, nelther sharped nor flatted.

The one-half position, exactly midway between the closed end
and the open end, has the very speclal property that a constrictlon
there would produce no shifting of any mode; and as we have already
learned, because an enlargement produces an effect Jjust the
negative of that produced by a contraction, and the negative of

zero is just zero, neither would an enlargement produce a shifting
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effect on any of the modes. This tells us one possible reason
why trumpet valves should be placed approximately at the center
of the air column of the trumpet, as they usually are. To the
extent that a trumpet behaves like a simple closed-open tubular
resonator, its modes should be undisturbed by constrictions or
enlargements at its middle, so if the valve design does not
maintain a constant cross-section, the modes should still not be
greatly disturbed. This general idea is good, but it works
imperfectly, mainly because the trumpet does not behave exactly
like a simple closed-open resonator; its effective acoustic
center changes as the modes change, and as we can see from the
last diagram in Figure 8, if a constriction is only slightly dis-
placed from the center its effect is maximally oscillatory among
the modes, one mode being sharped, the next being flatted, the
next being sharped, etc. When we see zigzag intonation such as
that of Figure 5D we can suspect valve constriction (or enlarge-
ment) and sometimes, through experiments, we can prove that the
zigzag comes from one or more of the valve passages.

Up to this point we have discussed the mode shifts caused by
constrictions, or enlargements, in only one half of our acoustic
resonator, the part from the closed end to the middle, corres-
ponding, in the trumpet, to the part from the mouthpiece end-plane
to the middle of the alr column. What happens if the constriction
1s beyond the half-way point. In that case, we can show, using
reasoning similar to that we have used above, that it is most
convenient to specify the position of the constriction in terms

of its fractional distance from the open end, instead of the
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closed end, so that the fractional distance will again be a
number between zero and one-half. Then we can show that the
effect of that constriction will be just the same size as the

the effect of a constriction having the same fractional distance

but it will have the opposte sign. One effect
from the closed end, e*eep%—%he%—%%—w%%%—be—%he—ﬂegé%**@—&%—%h&t

will ke the negative of the other
effest, To 1llustrate, a constriction at the fractional distance

2/9 from the closed end will produce a maximal sharping of the
fifth mode, as shown in the third diagram of Figure 8, but a
constriction at the fractional distance 2/9 from the open end
will produce a maximal flatting of the fifth mode. The diagram
for the constriction at the fractional distance 2/9 from the open
end would be Jjust like the third diagram of Figure 8, except

that it would be turned upside down.

With only the knowledge we have acquired here, we can picture
possible constriction and enlargement configurations that will
account for intonation curves of the types that actual trumpets
exhibit. For instance, let us refer back to our most zigzagged
actual example, D of Figure 5. It shows a mode-to-mode zigzag
superimposed on a monotonic flatting curve. We have already dis-
cussed how zigzagging could come from a constriction in the
neighborhood of the valves. If we now refer to the first diagram
of Figure 8, we can see how a monotonic flatting could be produced,
as we go from the second mode to the eighth. This could come
from tee:sachzéonstriction in the neighborhood of the mouthpiece -
leaderpipe junction. However, we must not forget that an enlarge-

ment at the bell end acts similarly to a constriction at the

mouthplece end, so for the monotonic flatting it is just as logical
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to suspect the bell flare. (The use of the verb "suspect" is
not meant to imply that we are necessarily looking for a
culprit. We may indeed believe in monotonic flatting, from the
second mode to the eighth, as being very natural for the player
to compensate, in which case we ascribe no fault. Many highly
esteemed, professional-quality trumpets show monotonic flatting.
However, 1t is a strong belief of the present author that the
best trumpets of the future will not show 1t.)

As of the time of this writing, a technical article has
recently appeared, by W. Kruger, on methods of pltch correction
of wind 1nstrumentsc1 . Kruger's teachings contain, explicitly,
some of the mathematics that has underlain the statements and
the 1llustrations of the present discussion. Kruger gives some
examples of actual experimental tunings of instruments, but to
.follow his descriptions at all well, one needs to follow the
helping mathematics. In verbal terms, such as we have been
using here, one might say that Kruger thought and worked in terms
of curves like those of Figure 7 and 8. Whatever kind of erroneous
intonation wave the instrument had, he tried to produce the
opposite, or correcting, kind of wave with one or two suitable
changes in the bore. He was successful in improving the into-
nation of several instruments with which he worked. Anyone who
wishes to go deeply into subject of intonation faults and their
elimination would do well to study his article.

Kruger hinted at what could be done beyond what he actually

did. It would be possible to use the mathematics of Fourier
analysis much more comprehensively than he did, both to find,

and to correct, intonation errors of faulty wind instruments.
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Although, in a non-mathematical discussion such as the present
one, 1t 1s hardly possible to advance the general concepts
taught by Kruger, there 1s at least one very interesting theo-
retical and experimental guestion that he did not mention, which
we can discuss.

The question: 1Is 1t possible to shift the pitch of only
one mode at a time, without affecting any of the others? The
answer 1s yes, and we shall show experimentally that a single
mode can be shifted, more than a third of a semitone, without
affecting the other modes by as much as could be detected in
musical playing. It is an interesting exercise, but not some-
thing one would want to do for fun, after once showing it could
be done, and almost certainly not something one could do for
. profit. To do it correctly is too time-consuming.

The preceding teachings have showed us that making any
constriction at a single place in the trumpet affects all the
modes, and produces intonation-change-waves like those shown in
Figure 8. Now, we can show mathematically that if we put sets
of constrictions in properly related places, so that they make
sets of intonation-change-waves that have thelr crests and
troughs in properly different places, we can make the waves
cancel each other out at some of the mode numbers, whereas at
other mode numbers they will reinforce each other. 1In fact,
we can show that if we add a set of mode shift vs. mode number
waves, like the ones shown in Figure 8, for the fractional
positions 2/9, 4/9, 6/9 (the negative of the 3/9 wave) and 8/9

(the negative of the 1/9 wave) the four waves will add up to
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produce only a slight flatting, end exactly the same flatting,
at 21l the modes except the fifth. However, at the fifth mode,
all of the waves will reinforce each other and produce a strong
sharping of that mode. Figure 9 shows the wave that is the sum
of the four mentioned waves.

The general prescription for raising one mode at a time,
and not affecting the relative intonation of the other modes,
is to put constrictions at all the internal velocity nodes of
the mode to be raised. By the word "internal" we are excluding
the"nodé‘at the mouthpiece end, which 1is unavailable to us for
constriction purposes. (The general prescription for lowering
one mode at a time, without affecting the relative intonation
of the other modes, would be to put constrictions at all the
internal velocity antinodes of the mode to be lowered.)

Figure 9, showing the theoretical effect of putting con-
strictions at the four internal nodes of the fifth mode, gilves
us considerable hope that we might be able to do single-mode-
tuning of the fifth mode. Our hope has to be tempered by the
fact that Figures 8 and 9 were derived from considerations of
simple closed-open cylindrical resonators, and we know the
trumpet is not so simple. There 1is actually some more compli-
cated theory that we could use on this problem that would lead
us to somg?zg%giicated constriction shapes to compensate for
the non-cylindrical air column of the trumpet, shapes that would
st11ll produce exactly the type of desirable effect shown by
Figure 9. However, complicated constriction shapes are unap-

pealing in advance. It 1s hard enough, experimentally, to
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short,
handle simple,shapes of constant cross-section, particularly

when they have to be bent and fastened into curved parts of

the trumpet. So our practical hopes must be pinned on the
trumpet being a near enough approximation to the simple, closed-
open resonator; and it turns out that, for practical musical
purposes, the approximation is good enough.

The trumpet chosen for the single-mode-tuning experiment
was a C—trumpet,:generally professional quality, but specifically
deficient in its fifth mode flatness. Figure 10 shows tne
intonation graph of the trumpet before the tuning, and gives
an advance look at the result that was achieved by single-mode
tuning.

The first experimental step was to find the positions of
the four internal nodes of the fifth mode within the trumpet.

We knew beforehand that these positions would not be at the
fractional positions along the total length of the trumpet
corresponding to the simple numbers, 2/9, 4/9, 6/9, and 8/9.

Our best simple-theoretical guess was that the nodes would be

at positions corresponding to those simple fractions times the
"apparent length" of the trumpet at the fifth mode. (The
"apparent length" at the fifth mode is eaual to nine times

the velocity of sound, divided by four times the frequency of

the fifth mode. For this trumpet, at the temperature of measure-
ment, it was 119 cm., whereas the total actual length of the

trumpet was 124 cm.)
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We determined the actual positions of the nodes, one-at-
a-time, by putting in one constriction, a piece of brass rod
about 3 cm. long( 1/4 - inch (0.635 cm) rod in the "valve bore"
locations, and 3/8 - inch (0.953 cm) rod in the 8/9, bell,
location) For each trial location the freguencies of all the
modes, from the second through the eighth were measured, with
the object of seeing how nearly the corresponding mode shift
vs. mode number wave of Figure 8 could be approximated. The
approximations were never inspiring, but the ways in which they
deviated from Figure 8 curves were expectable from non-simple
theory. The loops representing flatting were larger than the
loops representing sharping, and the waves did not have constant
periods. The very wiggly waves for positions near the "4/9
position" and the "6/9 position" were sometimes difficult to
interpret at all. On the other hand, those very wiggly waves
made the best locators for the nodal positions, because they
were so sensitive to slight displacements of the constriction.

For each node, the position finally selected was the one
in which the Figure-8-type wave showed not only an apparent
maximum sharping for the fifth mode, but also symmetrical, -
equal, sharping (or flatting) for the neighboring fourth and
sixth modes. It is believed that the finally determined

positions were correct to within about one centimeter.



(23)

For the reader's possible interest, the final nodal
positions, measured from the mouthpiece end-plane of the
trumpet were: 25.4, 50.8, 80.0, and 106 cm.

After the nodal positions had been determined, final
constriction sizes were calculated. Theory such as that
found in the Kruger article016tells us that to raise a
frequency a third of a semi-tone, about 2 per cent, the total
"apparent volume" of the constrictions should be about 2
per cent of the "apparent volume" of the air column. The
"apparent volume" of the air column is egual to the apparent
length, already defined, times the "valve bore" cross-section.
Each constriction in a part of the trumpet that is of "valve
bore" should, therefore, have a volume of about 1/2 per cent
. of the apparent volume of the air column. However, wherever
the bore is larger, as it is at the 6/9 and 8/9 positions,
the actual volume of the constriction should be enlarged by
the ratio of the actual cross-sectional area to the "valve
bore" cross-sectional area.

The actual final constrictions used in the experiments
were: at the "2/9 position", a 1/8 inch (0.318 cm) rod 3.2
inches (8.13 cm) long; at the "4/9 position", the same; at
the "6/9 position, several short pieces, flexlbly strung
together,of 1/8 inch (0.318 cm) rod,to make a total length of

3.6 inch (9.1 cm): and at the "8/9 position, a piece of
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1/4 inch (0.635 cm) rod, 2.5 inches (6.35 cm) long. The
constrictions were held in thelr places by small wire loops
of negligible volume.

The finel tuning results, as already mentioned, are shown
in Figure 10. The fifth mode was fully corrected (up to mean
temperament standard pitch). The second and eighth modes
were hardly moved at all. The only significant departures
from the ideality of single-mode-tuning were shoﬁn by the
third and sixth modes, but even those departuregfgsét at the
borderline of musical detectability (about 5 cents).

So, we have now added to the general intonation improve-
ment results shown, for example, in the article of Kruger,

a demonstration that, with sufficient effort we can even tune
only one mode at a time. This fact, standing alone, would

seem to indicate that, with sufficient effort, using methods
such as we have discussed, all the modes of a trumpet could be
put into perfect alignment. This is true, with reservations.
The main catch is that we have been discussing in these pages,
only the usual nominal playing modes, the second through the
eighth. Although 1t may not affect the other modes from the
second through the eighth, the kind of tuning required to bring
a single mode into near perfect alignment with its neighboring
modes may throw out of alignment some of the upper modes above
the eighth. We may now say that the quotation from Bate  jalready

given not only hinted how even single-mode-tuning might be

)



\ )/

(25)

accomplished, but forecasted accurately the kind of disadvantage
it might have. It is well known that the characteristic trumpet
tone depends upon the presence of many of the harmonics of
the prime tone being sounded. Misalignment of harmonics must
tend to darken the tone. That alone might not be undesired.
It might even be desired, but if so, there would be better ways
to bring it about. The most serlous concern 1s that misalign-
ment of upper harmonics deterlorates the response of an instru-
ment as has been shown by BenadeC8’C15'

Tt seems not unreasonable to predict that, in the long
run, our increasing knowledge of all the things we can or could,
do to correct imperfect intonation will bring us around to a
modern, scientifically-supported, confirmation of the traditional

belief mentioned by BateCII: "If - we examine a large number

[of trumpets], both antique and modern, we come to the conclusion

that makers have almost always regarded sudden changes in the
size of the bore as undesirable". We might extend this to cover
changes in the slope of the bore, such as would occur at the
junctions of conic frusta of differing taper.

It is possible to design a monotonically-smooth-bored
trumpet to give any desired type of monotonically smooth into-
nation pattern, and that may come to be agreed upon as the best
procedure.

As we approach the end of this particular discussion,

we may appropriately take a long look backward in time, and
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at least a short look forward. Trumpets have been made and
played for literally thousands of years, and music has been
made upon them for at least a few hundred years, but until
very recently, the shapes of the alr columns inside trumpets
have been changed only by trial and error.

The trial part is forever indispensable, but much of the
error part can now be avoided. We are now learning the physical
reasons for the various shape features of the trumpet air
column, and we can not only explain why the old shapes worked
(when they did) but we can also design new shapes that will
work better than the old. We can already not only correct
faulty intonation, but can design a trumpet ab initio that
will have good 1ntonationc7.

We have not dealt here with the ever-present valve problems.
Partly, this was so that we could devote more discussion to

the single-mode-tuning problem, and partly i1t was because
there are already good treatments of the valve problems in the

c2,C3,C12 c5

literature . The article of Young “even dliscusses

the differences in valve crook lengths that might be allowed
because the third valve crook is used less often and may
therefore not be at the same temperature as the first and

second valve crooks.
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A final comment: We now know that the many years of
evolution of the trumpet did not lead to intonation that we
could call ideal, but ideal intonation (at least as we have
so far defined it, among the first eight modes) is quite
attalnable if trumpeters demand it. The results of Renade
and his co-workers, as reported for instance in the Scientific
American articleCIE, have shown that the upper resonances,
above the eighth mode, have important cooperative effects
with the lower resonances we have been discussing here.
Improving the trumpet must involve improving those cooperative
effects. But there i1s no barrier to improvement that has yet

become apparent. There seem to be exciting possibilities

ahead.

(<7
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